Antiproton Source & the Proton Driver

Paul Derwent
Proton Driver Workshop
6 Oct 2004

Initial Run II Goals

* Goals Initial Phase

- -> Peak Accumulation Rate
 - 20 e10/hr (current best 13e10/hr)
- -> Accumulate for 15-20 hours
- -> Final Pbar Parameters: Stacked in Accumulator!
 - ~200e10 pbars
 - Transverse emittance ~10 π mm mr (95% normalized)
 - Longitudinal emittance ~40ev-Sec

* Inputs

- -> 5e12 Protons on Target (current best 7e12 with slip stacking)
- \rightarrow 1x10⁸ Pbars into Debuncher every 1.5 seconds (current best 8x10⁷ every 2 seconds)
 - ±2% momentum spread
 - <0.8 nsec bunch length (defined by bunch length on target)

Run II Upgrade Goals

* Goals Upgrade Phase

- -> Accumulation Rate
 - Peak: 45 e10/hr
 - · Average: 40e10/hr
- -> Accumulate for 15 hours
- -> Final Pbar Parameters: Stacked in Recycler!
 - · ~600e10 pbars
 - Transverse emittance ~10 π mm mr (95% normalized)
 - · Longitudinal emittance ~54ev-Sec

* Inputs

- -> 8e12 Protons on Target
- -> 3x10⁸ Pbars into Debuncher every 2.0 seconds
 - ±2% momentum spread
 - <1.5 nsec bunch length (defined by bunch length on target)</p>
 - Lens and aperture upgrades to increase flux/proton to Debuncher

Strategy

* Present Operations

- -> Accumulator: final repository for pbars
- -> Stochastic Cooling:
 - Cooling time ~ Number of particles
 - · Limits
 - cycle time (Debuncher cooling)
 - stack size ~ 300e10
 - stacking rate falls off with stack
 size (gain and cycle time)
- -> Transfer to Tevatron ~ 1/day

* Future Operations

- -> Recycler : final repository for antiprotons
- -> Electron Cooling:
 - Cooling Time ~ Independent
 Number of particles
 - Stack Size: ~600x10¹⁰
 - Stacking Rate: ~ Independent of Stack size
- -> Accumulator:
 - · Optimized for flux, not density
 - Smaller Stack size: ~30×10¹⁰
 - Still limited by cooling in Debuncher and stacktail
- -> Frequent (2/hour) transfers between Accumulator and Recycler
- -> Transfer to Tevatron ~1/day

Accumulation Process

* Diffuse, low intensity pbar beam from target

-> Every 2 seconds

->

- * Combination of stochastic and electron cooling
 - -> Combine many pulses
 - -> Cool transverse and longitudinal phase space

->

* Cold, high intensity pbar beam for the Tevatron

*

Density Variable: Number per phase space volume

$$\frac{\rho_{6D}}{(\pi \, \text{mm mr})^2 \text{eVsec}} = \frac{N_{particles}}{\varepsilon_H \varepsilon_V \varepsilon_L}$$

Debuncher Cooling

- * Debuncher: every 2 seconds collect beam from AP2, cool, and transfer to Accumulator
 - -> RF Bunch Rotation
 - · Exchange momentum spread for time spread
 - · ρ6D ~ 29
 - -> Stochastic Cooling
 - · Liquid He temperature pickups
 - 4-8 GHz in 4 separate bands

•

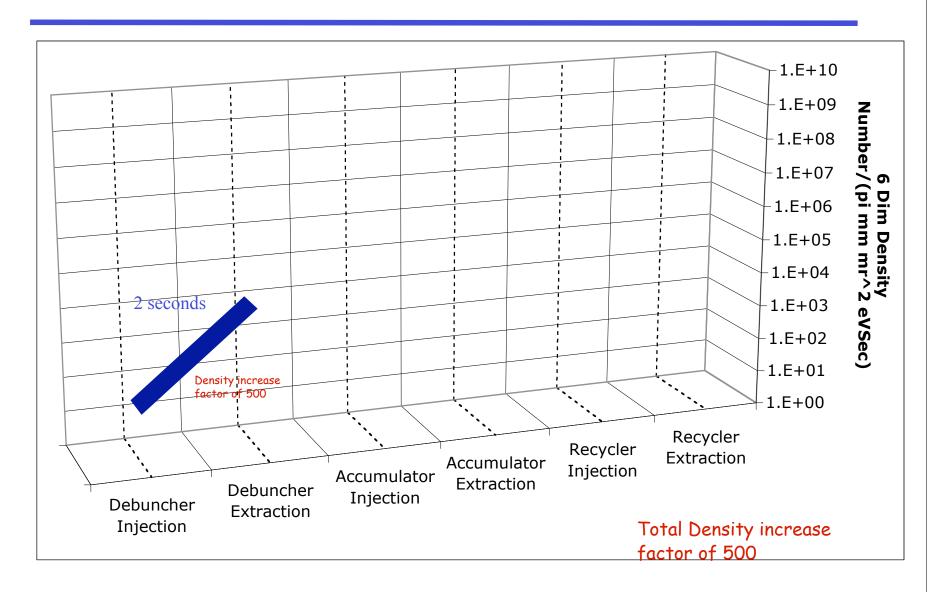
More pbars, slower cooling (1/N) longer cycles

would need improvements here!

Momentum: 10x compression in 2 Seconds

- 95% width: 6 MeV/c

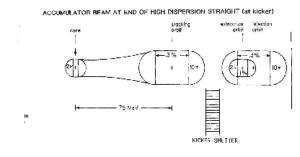
• Transverse: 7x compression in 2 seconds

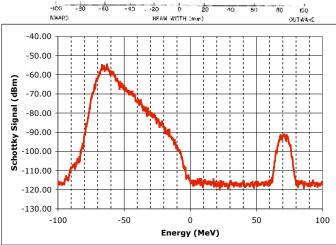

 $-45 \pi mm mr$

_

-> Extraction to Accumulator

· ρ₆D ~ 13,700

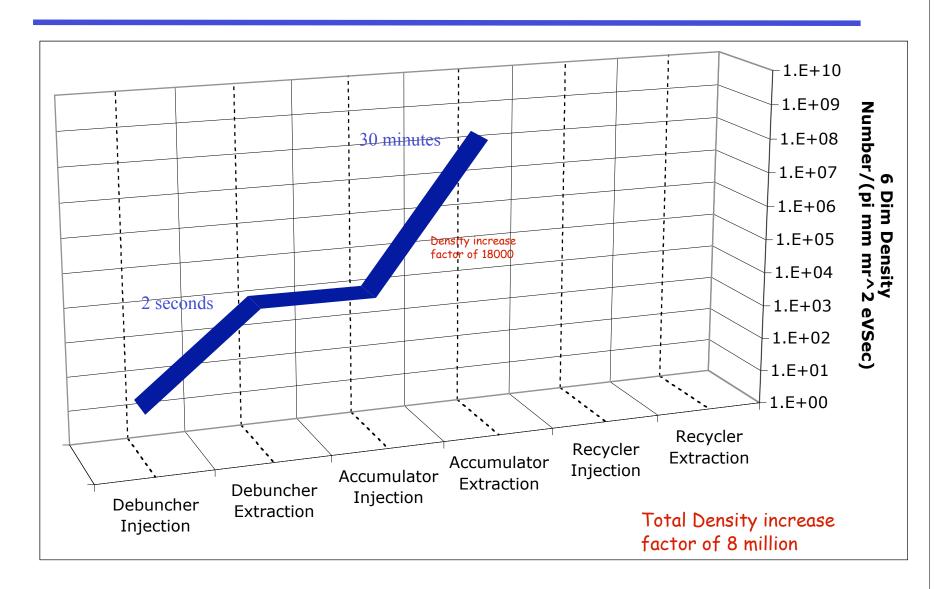

Phase Space Density -- Debuncher



Accumulator Cooling

* Accumulator Stacking

- -> Process
 - Every 2 seconds
 - Beam is injected
 - ρ6D ~ 13,000
 - Beam is bunched with RF
 - Moved with RF to the Stacking orbit
 - Debunched on Stacking orbit
 - Stacktail pushes and compresses beam to the Core
 - Transverse Core cooling system cools the beam transversely in the stacktail and the core
- -> Accumulate ~ 30 minutes, transfer to Recycler
 - ρ₆D ~ 237,000,000



More Pbars, 1/N cooling time

Instabilities, more frequent transfers

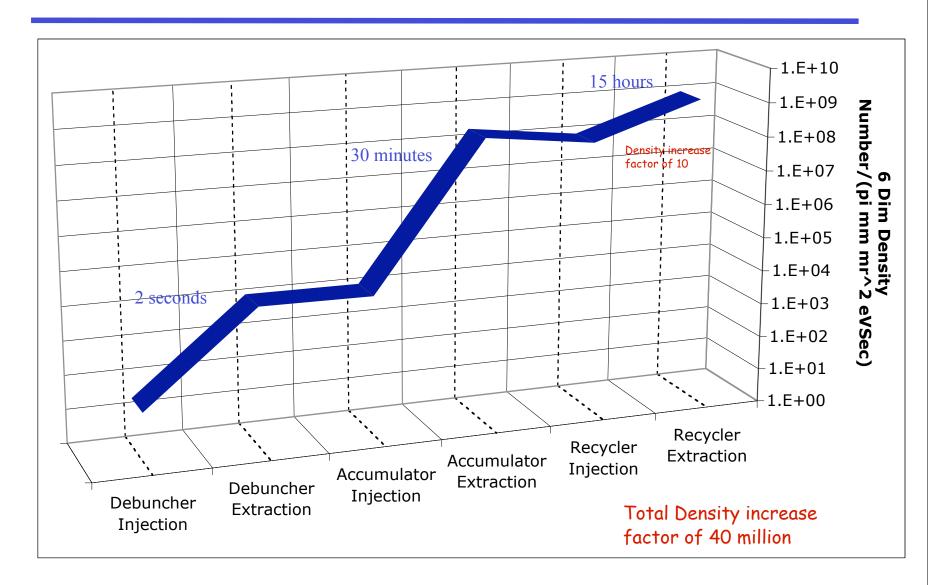
Phase Space Density -- Accumulator

Recycler

* Stochastic Cooling:

- -> Every $\frac{1}{2}$ hour
 - ρ6D ~ 100,000,000
 - ~22x10 10 pbars in ~15 eV-sec and 12 π mm mr
 - Transverse stochastic cooling of injected beam
 - to cool within reach of electron cooling
 - » fits within the e-beam
 - kept separate from main stack
 by barrier buckets

More pbars
More Frequent transfers
1/N cooling time


* Electron Cooling

- -> Process: Every ¹/₂ hour
- -> Injected batch merged into the stack with RF barrier manipulations
- -> The Recycler stack
 - Is cooled mainly with electron cooling in all 3 planes
 - Weak transverse stocke tic cooling for high amplitude particles
- -> After 15 hours:
 - · ρ6D ~ 1,080,000,000

More pbars More Frequent transfers

Instabilities
Cooling rates
More e-beam current?

Phase Space Density -- Recycler

Stacking Process

* Through stochastic and electron cooling

- -> Diffuse, low intensity beam → cold high intensity beam
- -> PGD increased by factor of 40 million
- -> Limited by
 - input flux into debuncher → aperture upgrades
 - · cooling performance
 - Debuncher
 - Accumulator
 - Recycler

_

Higher intensity Slower: 1/N cooling

More Frequent Acc→Rec
Transfers

* Achieved by:

- -> Optimizing Accumulator for flux
- -> Integrating Recycler into operations
- -> Utilizing Electron Cooling at 8 GeV
 - Size ~ 600x10¹⁰ pbars
 - Transverse emittance ~ 10π mm mr
 - · Longitudinal emittance ~54 eV-sec

Need significant improvements in all cooling systems

Stochastic in Deb, Acc, Rec

Electron in Recycler

If everything worked perfectly...

- * With proton driver, double beam on target (1.5 2 e13)
 - -> Collect all beam of target
 - · Beam sweeping to keep target from disintegrating
 - -> Transport to Debuncher
 - -> Improve Debuncher Cooling performance (momentum and transverse) by ~factor 2
 - double beam intensity, halves cooling rate
 - double performance, meet initial specifications
 - Need another cooling orbit -- in Acc? new Ring?
 - -> Push Accumulator Stacktail to (beyond?) stability limits, transfer every 15 minutes
 - -> Improve Recycler cooling performance (transverse) by ~ factor 2
 - -> Improve Electron cooling rates by factor ~2
 - Doubling Pelletron current to 1 A
 - -> Push Recycler stability limits at expense of longitudinal emittance (roughly double)
 - -> 1e13 in 60eV-sec in 15 hour time period?
 - with significant upgrades over Run II Upgrade program